Jump to content
Geochemist's Workbench Support Forum

swhitman

GWB Community
  • Posts

    13
  • Joined

  • Last visited

Posts posted by swhitman

  1. Hello Jia,

    Thanks for the clarification.

    Some clarification of my own -- I did understand that the diagram itself used the dominant species, but I was hoping that it would be possible to smartly select corresponding data points from GSS to plot in the diagram.

    For example, in the attached diagram, for pH < 6, pairs of pH and {Al3+} would plot, and for pH > 6 pairs of pH and {Al(OH)4-} would plot.

    As I understand it, currently, only one variable can be plotted on the y-axis -- that is, the diagram species that is chosen in the basis pane.

    As illustrated in the attached figure, there are cases where it would make sense to vary which species is plotted (as scatter points). In some cases, there are more than two predominant species to consider across a given pH range.

    My current workaround for this is to make two separate diagrams: 1 for low pH conditions, and 1 for higher pH conditions.  Another workaround might be to 'trick' the software by substituting values of {Al(OH)4-} into the {Al3+} row, in a separate GSS to avoid confusion.

    Sound like the answer right now is 'that's not possible', but it would be a useful option!

    Hopefully that all makes sense, please let me know if it is unclear.

  2. I'm wondering if it is possible to plot more than one species on the y-axis of an act2 diagram.  In some cases, the most important species changes with the x-axis variable (e.g., pH).  One example is attached as an image.  For aluminum, Al3+ is most important for pH <6, while Al(OH)4- is most important for pH >6.

    Can a plot like this be recreated in Act2, or another module in GWB?

    More generally, would it be possible to create a mosaic diagram for pH activity plots, such that the concentration of the dominant species is used for scatter data, as well as the phase boundaries in these plots? It seems like this would be a very similar concept to the 'mosaic diagrams'.

     

    Thanks,

    Fig2_Nordstrom1982.PNG

  3. Hi Brian,

    Thank you, this was very helpful!

    A couple notes/questions:

    Is there any way to change the visualization so that it is apparent which parameters are user defined in GSS? This would probably help me from making that mistake again if so.

    When I set up the user defined eq. for carbonate alkalinity, it seems that it is adding the values to the total, even if they are preceded by a "<" character. Is there any way to change this behavior?

     

    Thanks Again,

  4. I'm confused with how GWB is handling alkalinity, both in GSS and in calculations with SPECE8.

    The data from my lab in mg/L CaCO3 eq. They report separately Carbonate, Bicarbonate, Hydroxide, and Total alkalinity. (results are <2, 100, <2, 100 respectively).

    In their reporting system, it looks like Carbonate alkalinity refers only to alkalinity from CO32--, whereas it seems as though in GWB carbonate alkalinty refers to alkalinity from HCO3- AND CO3--.  Is that correct.

    Next, I am unsure if when I input data into GSS, for Bicarbonate Alkalinity, Carbonate Alkalinity, or Hydroxide Alkalinity if the implied units are as mg/L CaCO3.

    Finally, when I use the GSS data to run a SPECE8 analysis, the basis field for HCO3- is already filled with a value not equal (<) to bicarbonate alkalinity. As a test, I set all alkalinity values equal to zero in the GSS file, and then re-ran SPECE8. The prepopulated HCO3- value was virtually unchaged!

    Can you please explain 1) if GSS expects values as CaCO3 for alkalinity, 2) If carbonate alkalinity  = bicarbonate alkalinity + carbonate alkalinity (as reported by lab), 3) what calculations SPECE8 is doing to arrive at a alkalinity numbers different from input values. ?

     

    Thank You,

    ColumnSamples_thermotdat.gss

  5. I'm trying to make an log activity of Cu++ vs pH chart in act2, and then overlay a scatter plot of sample data onto it.

    I'm having trouble because I can't calculate the log activity of Cu++ (only can do Cu+) in geochemists spreadsheet (see first image). I

    I also tried just basis swapping Cu+ for Cu++ but that changes the minerals that appear on the activity vs pH diagram, and I want the divalent minerals to appear on the chart.

    I am using the minteq database, but also tried some others and actually can't find any that have Cu++ as a species to calculate.

    What's going on here?

    Any help is appreciated.

     

    CuvspH.PNG

    CalcSpecE8_Cu.PNG

  6. Quote

    The bar chart expresses the bulk composition of the fluid in electrical equivalents and does not account for speciation. 

    Ah, OK.  This is what I was looking for.  I understand what it is doing now.

    It is not really a visualization of charge balance showing the major species, just which basis cations and anions make up the solution.

    Quote

    Please also note that the axis on the bar chart does not represent ionic strength of the fluid. If you want to check if mass balance is honored, you should use molality as the unit. If you add up the concentration of individual species, you will arrive at the bulk composition of that component.

    That makes sense.  I'm not sure what I was thinking with the ionic strength for these charts.

    Thanks Again for your help.

    Spencer

  7. Thanks.

    If I do as you said for the example of sulfate,  I get the following for by-component equivalents with the bar graph (169.7 meq/kg for SO4--):

    Step Xi H2O Al+++ Ca++ Cd++ F- Fe++ H+ K+ Mg++ Mn++ O2(aq) SO4-- SiO2(aq) Zn++
        meq/kg meq/kg meq/kg meq/kg meq/kg meq/kg meq/kg meq/kg meq/kg meq/kg meq/kg meq/kg meq/kg meq/kg
    0 0 0 12.01042 24.50093 0.012581 0.22226 23.2105 16.23034 0.163255 29.09023 67.92366 0 169.7019 0 5.106747

    and the following for Total Sulfate Species (91.05 meq/kg) using the xy plot export procedures and selecting only SO4-- species  (Total 91.05 meq/kg).

    Sulfate Species:                                              
    Rxn progress Al(SO4)2- AlSO4+ CaSO4 Cd(SO4)2-- CdSO4(aq) Fe(SO4)2- FeHSO4++ FeSO4 FeSO4+ H2S(aq) H2SO4 HS- HSO4- KSO4- MgSO4 MnSO4 S-- S2-- S3-- S4-- S5-- S6-- SO4-- ZnSO4
      meq/kg meq/kg meq/kg meq/kg meq/kg meq/kg meq/kg meq/kg meq/kg meq/kg meq/kg meq/kg meq/kg meq/kg meq/kg meq/kg meq/kg meq/kg meq/kg meq/kg meq/kg meq/kg meq/kg meq/kg
    0 1.42095 1.629153 0 0.002644 0 1.338236 0.035607 0 6.387276 0 0 8.57E-82 4.508028 0.01168 0 0 1.58E-92 9.45E-148 1.41E-203 7.52E-257 0 0 75.71746 0
     

     

     

                                               

     

    So, it appears there is a mismatch, unless I'm still missing something about how these plots are representing the data?

  8. Thanks again, sorry to belabor this, but I just can't seem to make these plots in a way that actually reflect the data, as explained below.

    I had gone over section 8.1 and de-selected "common ions".

    Something still seems wrong, but I can't figure out what.

    One thing I notice is that the bar chart (posted above) would seem to indicate about double the amount of ionic strength as what the results show (see text results below from SpecE8 for this water).

    I ended up making the plot I wanted using a combination of PHREEQC and Python, included below.  The ionic strength is pretty consistent with that reported by the SpecE8 results, and it shows the major species that make up the composition of the solution, not just the basis species.

    I have tried to replicate this in GWB by doing as you suggest (adding or swapping basis species), but no luck so far.

              Temperature =  25.0 C    Pressure =  1.013 bars
              pH =  2.510              log fO2 =  -26.406
              Eh =   0.6900 volts      pe =  11.6642
              Ionic strength      =    0.187967 molal
              Charge imbalance    =    0.014914 eq/kg (7.833% error)
              Activity of water   =    1.000000
              Solvent mass        =      1.0000 kg
              Solution mass       =      1.0124 kg
              Mineral mass        =     0.00000 kg
              Solution density    =    1.019    g/cm3
              Solution viscosity  =    0.009    poise
              Chlorinity          =    0.000000 molal
              Dissolved solids    =       12210 mg/kg sol'n
              Elect. conductivity =     8336.46 uS/cm (or umho/cm)
              Hardness            =     2681.46 mg/kg sol'n as CaCO3
              Water type          =    Mn-SO4
              Bulk volume         =        994. cm3
              Fluid volume        =        994. cm3
              Mineral volume      =       0.000 cm3
              Inert volume        =       0.000 cm3
              Porosity            =        100. %
              Permeability        =        98.7 cm2

      Nernst redox couples                                 Eh (volts)     pe
     ----------------------------------------------------------------------------
       e-  + H+  + .25 O2(aq)  = .5 H2O                       0.6900   11.6642

      No minerals in system.

      Aqueous species       molality    mg/kg sol'n    act. coef.     log act.
     ---------------------------------------------------------------------------
       SO4--                  0.04130         3919.      0.2786       -1.9390
       Mn++                   0.01958         1062.      0.3399       -2.1769
       MnSO4                  0.01480         2207.      1.0000       -1.8297
       Fe++                   0.01175         648.0      0.3399       -2.3987
       Mg++                  0.008345         200.3      0.3934       -2.4838
       FeSO4                 0.007277         1092.      1.0000       -2.1380
       Ca++                  0.006824         270.2      0.3399       -2.6346
       MgSO4                 0.006378         758.3      1.0000       -2.1953
       CaSO4                 0.005576         749.8      1.0000       -2.2537
       HSO4-                 0.004752         455.7      0.7363       -2.4560
       H+                    0.003794         3.777      0.8146       -2.5100
       AlSO4+                0.001625         197.4      0.7363       -2.9222
       Al(SO4)2-             0.001462         316.4      0.7363       -2.9680
       Zn++                  0.001348         87.07      0.3399       -3.3388
       ZnSO4                 0.001236         197.1      1.0000       -2.9079
       Al+++                0.0007423         19.78      0.1370       -3.9928
       AlF++                0.0002196         9.973      0.3103       -4.1666
       K+                   0.0001531         5.913      0.7129       -3.9620
       SiO2(aq)             0.0001208         7.167      1.0491       -3.8972
       KSO4-                1.214e-05         1.621      0.7363       -5.0486
       Cd++                 3.421e-06        0.3799      0.1332       -6.3411
       AlF2+                2.469e-06        0.1585      0.7363       -5.7404
       CdSO4(aq)            1.513e-06        0.3115      1.0000       -5.8202
       Cd(SO4)2--           1.433e-06        0.4309      0.1332       -6.7192
       AlOH++               1.233e-06       0.05357      0.3103       -6.4173
       HF                   3.064e-07      0.006055      1.0000       -6.5137
       F-                   9.258e-08      0.001737      0.7250       -7.1731
       MgF+                 1.886e-08     0.0008068      0.7363       -7.8574
       MnF+                 1.327e-08     0.0009691      0.7363       -8.0101
       FeF+                 1.196e-08     0.0008841      0.7363       -8.0553
       H2SO4                1.068e-08      0.001035      1.0000       -7.9712
       CaF+                 2.664e-09     0.0001554      0.7363       -8.7075
       AlF3                 1.532e-09     0.0001271      1.0000       -8.8147
       Al(OH)2+             1.139e-09     6.865e-05      0.7363       -9.0763
       ZnF+                 7.515e-10     6.263e-05      0.7363       -9.2571
       Al2(OH)2++++         5.360e-10     4.658e-05      0.0428      -10.6399
       FeOH+                1.162e-10     8.364e-06      0.7363      -10.0677
       MnOH+                7.540e-11     5.359e-06      0.7363      -10.2556
       H3SiO4-              8.648e-12     8.124e-07      0.7363      -11.1960
       OH-                  4.601e-12     7.729e-08      0.7250      -11.4768
       Mn2OH+++             3.331e-12     4.175e-07      0.1199      -12.3988
       MgOH+                2.335e-12     9.531e-08      0.7363      -11.7646
       MgH3SiO4+            9.342e-13     1.102e-07      0.7363      -12.1625
       CaH3SiO4+            3.750e-13     5.008e-08      0.7363      -12.5589
       H2F2                 2.516e-13     9.943e-09      1.0000      -12.5993
       Al(OH)3              2.347e-13     1.808e-08      1.0000      -12.6295
       CaOH+                2.088e-13     1.177e-08      0.7363      -12.8133
       HF2-                 8.831e-14     3.403e-09      0.7363      -13.1869
       AlF4-                3.507e-14     3.567e-09      0.7363      -13.5881
       Al3(OH)4(5+)         2.206e-14     3.247e-09      0.0072      -15.7998
       CdOH+                2.004e-14     2.562e-09      0.6123      -13.9111
       Mg2OH+++             1.255e-15     8.132e-11      0.1199      -15.8228
       KOH                  1.156e-16     6.404e-12      1.0000      -15.9372
       Al(OH)4-             1.056e-16     9.906e-12      0.7363      -16.1095
       AlF5--               4.609e-19     5.553e-14      0.2786      -18.8914
       MgH2SiO4             4.587e-19     5.365e-14      1.0000      -18.3384
       Fe(OH)2              1.582e-19     1.404e-14      1.0000      -18.8009
       Mn(OH)2              4.435e-20     3.897e-15      1.0000      -19.3531
       CaH2SiO4             2.735e-20     3.625e-15      1.0000      -19.5630
       Mg(H3SiO4)2          1.599e-20     3.387e-15      1.0000      -19.7963
       Mn2(OH)3+            2.594e-21     4.122e-16      0.7363      -20.7191
       Ca(H3SiO4)2          1.336e-21     3.039e-16      1.0000      -20.8742
       H2SiO4--             5.896e-22     5.480e-17      0.2786      -21.7844
       Cd(OH)2(aq)          2.132e-22     3.084e-17      1.0000      -21.6711
       H6(H2SiO4)4--        3.564e-24     1.346e-18      0.2786      -24.0031
       AlF6---              8.397e-26     1.169e-20      0.0552      -26.3342
       SiF6--               5.848e-27     8.207e-22      0.2786      -26.7880
       Mn(OH)3-             1.870e-29     1.957e-24      0.7363      -28.8611
       Fe(OH)3-             1.096e-29     1.157e-24      0.7363      -29.0932
       O2(aq)               4.723e-30     1.493e-25      1.0491      -29.3050
       H2(aq)               3.302e-32     6.575e-29      1.0491      -31.4604
       Cd(OH)3-             1.265e-32     2.041e-27      0.6123      -32.1111
       Mg4(OH)4++++         6.666e-39     1.088e-33      0.0428      -39.5452
       H4(H2SiO4)4----      9.174e-40     3.448e-34      0.0057      -41.2805
       Mn(OH)4--            1.337e-40     1.624e-35      0.2786      -40.4289
       Cd(OH)4--            1.676e-43     2.987e-38      0.1332      -43.6511
       MnO4-                3.648e-52     4.286e-47      0.7363      -51.5709
       MnO4--               5.045e-54     5.927e-49      0.2786      -53.8522
       Al13O4(OH)24(7+)     8.224e-67     6.685e-61      0.0001      -70.2934
       H2S(aq)              1.805e-80     6.077e-76      1.0000      -79.7434
       HS-                  9.042e-85     2.953e-80      0.7250      -84.1834
       S--                  8.543e-96     2.705e-91      0.3103      -95.5766
       S2--                5.318e-151    3.368e-146      0.2786     -150.8292
       S3--                8.189e-207    7.780e-202      0.2786     -206.6417
       S4--                4.507e-260    5.709e-255      0.2786     -259.9011
       S5--                3.375e-316    5.345e-311      0.2786     -300.0000
       S6--                    0.0000        0.0000      0.2786     -300.0000

    Surf_Tails.png.134963166fb897c70720bc4a449ba441.png

  9. Thanks Jia, very helpful.

    I think I am almost there.  I can calculate the concentrations of the various species as you describe.

    However, using the Graphs -> Pie Chart (or Bar Chart) option in GSS, all of the iron is still listed as Fe++, but from doing the calculations, I know that most of the iron is present as Fe(3) (mostly FeSO4+).  Does the "Fe++" on the bar chart just mean that that portion of cations is from the BASIS species (Fe++), and not actually Iron in the Fe(2) state?

    Also, I assume that "total component concentration" would be Fe in the original basis species (Fe++)?

     

  10. Hello Jia,

    Thanks for the reply.

    Good to know I can manually specify the redox distribution by decoupling.

    What I was thinking I would like to do was to enter total iron, then enter either a redox couple (e.g. O(0)/O(-2) or my pe measurement, or specify redox equillibrium with a mineral phase (e.g. pyrite), and then speciate all redox species based on that.

    Is that possible to do?

    If so, can you help me with how to do it?

    Thanks,

     

    Spencer

  11. Hello,

     

    I am interested in calculating the charge balance of some chemical analyses and representing them graphically (e.g. with a pie graph in units of meq).

    The question I have is how to represent species that can be present in multiple valences (e.g. Fe).  The default for Fe in GSS is as Fe+++, which is likely to be true for some of my samples, but not all.  Do I need to do a SpecE8 run first and specify some kind of redox conditions in order to have Fe as both Fe++ and Fe+++?  This question would apply to other elements with multiple charge states.  When I calculate charge balance within the GSS program, is a speciation calculation run for the solution?

     

    Thanks,

     

    Spencer

×
×
  • Create New...